The De Rham Theorem for the Noncommutative Complex of Cenkl and Porter

نویسنده

  • LUIS FERNANDO MEJIAS
چکیده

We use noncommutative differential forms (which were first introduced by Connes) to construct a noncommutative version of the complex of Cenkl and Porter Ω∗,∗(X) for a simplicial set X. The algebra Ω∗,∗(X) is a differential graded algebra with a filtration Ω∗,q(X) ⊂ Ω∗,q+1(X), such that Ω∗,q(X) is a Qq-module, where Q0 = Q1 = Z and Qq = Z[1/2, . . . ,1/q] for q > 1. Then we use noncommutative versions of the Poincaré lemma and Stokes’ theorem to prove the noncommutative tame de Rham theorem: if X is a simplicial set of finite type, then for each q ≥ 1 and anyQq-moduleM , integration of forms induces a natural isomorphism of Qq-modules I :Hi(Ω∗,q(X),M)→Hi(X;M) for all i≥ 0. Next, we introduce a complex of noncommutative tame de Rham currents Ω∗,∗(X) and we prove the noncommutative tame de Rham theorem for homology: if X is a simplicial set of finite type, then for each q ≥ 1 and any Qq-module M , there is a natural isomorphism of Qqmodules I :Hi(X;M)→Hi(Ω∗,q(X),M) for all i≥ 0.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Periodic Cyclic Homology as Sheaf Cohomology

0. Introduction. This paper continues the study of the noncommutative innn-itesimal cohomology we introduced in 3]. This is the cohomology of sheaves on a noncommutative version of the commutative innnitesimal site of Grothendieck ((8]). Grothendieck showed that, for a smooth scheme X of characteristic zero, the cohomology of the structure sheaf on the innnitesimal site gives de Rham cohomol-og...

متن کامل

De Rham and Infinitesimal Cohomology in Kapranov’s Model for Noncommutative Algebraic Geometry

The title refers to the nilcommutative or NC-schemes introduced by M. Kapranov in Noncommutative geometry based on commutator expansions, J. reine angew. Math 505 (1998) 73-118. The latter are noncommutative nilpotent thickenings of commutative schemes. We consider also the parallel theory of nil-Poisson or NP -schemes, which are nilpotent thickenings of commutative schemes in the category of P...

متن کامل

De Rham Theorem for Extended L 2 -cohomology

We prove an analogue of the de Rham theorem for the extended L 2-cohomology introduced by M.Farber [Fa]. This is done by establishing that the de Rham complex over a compact closed manifold with coefficients in a flat Hilbert bundle E of A-modules over a finite von Neumann algebra A is chain-homotopy equivalent in the sense of [GS] (i.e. with bounded morphisms and homotopy operators) to a combi...

متن کامل

De Rham Theorem for Extended L²-cohomology

We prove an analogue of the de Rham theorem for the extended L 2-cohomology introduced by M.Farber [Fa]. This is done by establishing that the de Rham complex over a compact closed manifold with coefficients in a flat Hilbert bundle E of A-modules over a finite von Neumann algebra A is chain-homotopy equivalent in the sense of [GS] (i.e. with bounded morphisms and homotopy operators) to a combi...

متن کامل

DE RHAM THEOREM FOR EXTENDED L-COHOMOLOGY M.A.SHUBIN Northeastern University

We prove an analogue of the de Rham theorem for the extended Lcohomology introduced by M.Farber [Fa]. This is done by establishing that the de Rham complex over a compact closed manifold with coefficients in a flat Hilbert bundle E of A-modules over a finite von Neumann algebra A is chain-homotopy equivalent in the sense of [GS] (i.e. with bounded morphisms and homotopy operators) to a combinat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002